Micromachined force sensors for the study of cell mechanics
نویسندگان
چکیده
A technique using micromachined mechanical force sensors to measure the force response of living cells is introduced. The force sensors consist of a probe and flexible beams. The probe is used to indent and stretch the cells, and the flexible beams are used to measure the cell force response. The stiffness of the sensors is designed at several nanonewtons per micrometer, but can be varied over a wide range. The sensors are fabricated by the SCREAM process. The deformation of the cells and the deflection of flexible beams are measured by an optical microscope coupled with a charge-coupled device camera. Experimental demonstrations show the feasibility, simplicity, and versatility of this technique. It addresses several disadvantages of existing related techniques, and is complementary to many of them. We expect that this new technique will attract significant attention and be employed much more in the study of cell mechanics. © 2005 American Institute of Physics. fDOI: 10.1063/1.1863792g
منابع مشابه
Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors
Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical mod...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملDielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملClosed-form Molecular Mechanics Formulations for the 3D Local Buckling and 2D Effective Young’s Modulus of the Nanosheets
A closed form three-dimensional solution is presented for determination of the local buckling (cell buckling) load of the nanosheets. Moreover, an expression is proposed for the effective 2D Young’s modulus of the unit cell of the nanosheet. In this regard, a three-dimensional efficient space-frame-like geometrical model with angular and extensional compliances is considered to investigate stab...
متن کاملEffect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes
It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005